SQA Higpor Math Poperz 2009

$$
\begin{aligned}
& y=x^{3}-3 x^{2}-9 x+12 \\
& \frac{d y}{d x}=3 x^{2}-6 x-9
\end{aligned}
$$

$\frac{d y}{d x}=0$ for turning points

$$
\begin{aligned}
& 3 x^{2}-6 x-9=0 \\
& 3\left(x^{2}-2 x-3\right)=0 \\
& 3(x-3)(x+1)=0 \\
& x-3=0 \quad x+1=0 \\
& x=3 \quad x=-1 \\
& 4=-15 \quad 4=17
\end{aligned}
$$

Statiarory poitts at $(-1,11)(3,-15)$

x	-1^{-}	-1	-1^{+}	3	3^{+}
du	tre	0	$-v e$	0	$+v e$
Supe	1	-	1	-1	

max T.A at $(-1,17)$
?... Ta at (2-r)

When $x=-2$
$y=15$ (tre)

$$
x=2
$$

$$
y=-10(-v e)
$$

$$
x=4
$$

$$
y=15 \text { (+ve) }
$$

$$
\text { 2. ax (i) } \begin{aligned}
f(x) & =3 x+1 \quad g(x)=x^{2}-2 \\
f(g(x)) & =f\left(x^{2}-2\right) \\
& =3\left(x^{2}-2\right)+1 \\
p(x) & =3 x^{2}-5
\end{aligned}
$$

(ii)

$$
\begin{aligned}
g(f(x)) & =g(3 x+1) \\
& =(3 x+1)^{2}-2 \\
q(x) & =9 x^{2}+6 x-1
\end{aligned}
$$

(b)

$$
p(x)=3 x^{2}-5
$$

$$
q(x)=9 x^{2}+6 x-1
$$

$$
\begin{aligned}
& \left\lvert\, \begin{array}{rl}
p^{\prime}(x) & =6 x \\
p^{\prime}(x) & =q^{\prime}(x) \\
6 x & =18 x+6 \\
-12 x & =6 \\
x & =-\frac{1}{2} \\
3 \left\lvert\, \begin{array}{ll}
12 & q^{\prime}(x)
\end{array}\right. & =18 x+6 \\
\text { (a)(i) }\left.1\right|_{1} ^{1} \frac{11}{9}-20 & 0
\end{array}\right. \\
& \text { (ii) } x^{3}+8 x^{2}+11 x-20=(x-1)\left(x^{2}+9 x+20\right) \\
&=(x-1)(x+5)(x+4)
\end{aligned}
$$

3 (b)

$$
\begin{aligned}
& \log _{2}(x+3)+\log _{2}\left(x^{2}+5 x-4\right)=3 \\
& \log _{2}(x+3)\left(x^{2}+5 x-4\right)=3 \\
&(x+3)\left(x^{2}+5 x-4\right)=2^{3} \\
& x^{3}+5 x^{2}-4 x+3 x^{2}+15 x-12=8 \\
& x^{3}+8 x^{2}+11 x-20=0 \\
&(x-1)(x+5)(x+4)=0 \\
& x=1 \text { or } x=-5 \text { or } x=-4
\end{aligned}
$$

1.

4 (b) cent.

$$
\begin{aligned}
m_{P Q} & =\frac{10-(-6)}{5-(-7)} \\
& =\frac{16}{12} \\
& =\frac{4}{3}
\end{aligned}
$$

So $m_{\text {TAN }}=-\frac{3}{4}$ since $m_{1} m_{2}=-1$

$$
\begin{aligned}
& Q(-7,-6) \\
& y+6=-\frac{3}{4}(x+7) \\
& 4 y+24=-3(x+7) \\
& 4 y+24=-3 x-21
\end{aligned}
$$

$3 x+4 y+45=0$ eqn. of tangent at Q
(c) radius of circle C_{1} is 10
so radii of C_{2}, C_{3} is 20
for C_{2} centre is $P(5,10)$
for C_{3} at centre, R_{1}

$$
\begin{aligned}
\overrightarrow{Q R} & =\overrightarrow{P Q} \\
& =\binom{-12}{-16} \\
\binom{-12}{-16} & =\binom{x}{4}-\binom{-7}{-6} \\
\binom{x}{4} & =\binom{-19}{-22}
\end{aligned}
$$

4 (c) cont

$$
\begin{gathered}
c_{2} \quad r=20 \text { Centre }(5,10) \\
(x-5)^{2}+(y-10)^{2}=400 \\
c_{3} \quad r=20 \text { Centre }(-19,-22) \\
\quad(x+19)^{2}+(y+22)^{2}=400
\end{gathered}
$$

5. (a) $g(x)=3 \cos (2 x) \quad m=3, n=2$
(b) $\quad f(x)=S(x)$

$$
\begin{aligned}
-4 \cos (2 x)+3 & =3 \cos (2 x) \\
7 \cos (2 x) & =3 \\
\cos 2 x & =\frac{3}{7} \\
2 x & =\cos ^{-1}\left(\frac{3}{7}\right) \\
& =1.13,5.16 \\
x & =0.6,2.6
\end{aligned}
$$

Lork in radicins correct to Id.e.
$a x \quad x=0.6$

$$
y=3 \cos 1.13
$$

$$
=1.3
$$

$$
\begin{aligned}
x & =2.6 \\
y & =3 \cos 5.16 \\
& =1.3
\end{aligned}
$$

Pts of intersectic, $(0.6,1.3) \quad(2.6,1.3)$

5 (c)

$$
\begin{aligned}
& \int_{0.6}^{2.6}-4 \cos (2 x)+3-3 \cos (2 x) d x \\
& =\int_{0.6}^{2.6}-7 \cos 2 x+3 d x
\end{aligned}
$$

$$
=\left[3 x-\frac{7 \sin 2 x}{2}\right]_{0.6}^{2.6}
$$

$$
=\left(7.8-\frac{7 s-5.2}{2}\right)-\left(1.8-\frac{75+1.2}{2}\right)
$$

$$
=(7.8+3.1)-(1.8-3.3)
$$

$$
=10.9-(-1.5)
$$

$$
=12.4
$$

6. (a)

$$
\begin{aligned}
N & =N_{0} e^{1 t} \quad N_{0}=61 \\
t & =14 \\
r & =0.016(1.6 \%) \\
N & =61 e^{0.016 \times 14} \\
& =76.3 \text { million. }
\end{aligned}
$$

(b) $N_{0}=5.1 \quad r=0.0043$

How las until $N=2 N_{0}$

$$
2 N_{0}=N_{0} e^{0.0043 t}
$$

$e^{0.0043 t}=2$ taking logs of both sides

6 (b) cont

$$
\begin{aligned}
\ln e^{0.0043 t} & =\ln 2 \\
0.0043 t & =\ln 2 \\
t & =\frac{\ln 2}{0.0043} \\
& =161.2
\end{aligned}
$$

Scotland's populatia will darble in 161.2 years.

7 (a)

$$
\begin{aligned}
p \cdot(q+r) & =p \cdot q+p \cdot r \\
& =4 \times 3 \cos 30^{\circ}+4 \times \frac{3^{*}}{2} \cos 90^{\circ} \\
& =12 \times \frac{\sqrt{3}}{2}+0 \\
& =6 \sqrt{3} .
\end{aligned}
$$

ψ

$$
\begin{aligned}
|r| & =|q| \sin 30^{\circ} \\
& =3 \times \frac{1}{2} \\
& =\frac{3}{2} \\
r \cdot(p-q) & =r \cdot p-r \cdot q \\
& =\frac{3}{2} \times 4 \cos 90^{\circ}-\frac{3}{2} \times 3 \cos 120^{\circ} \\
& =0-\frac{9}{2}\left(-\frac{1}{2}\right) \\
& \frac{7}{4}
\end{aligned}
$$

