SQA Might Math Paper Z 2009

Candidates must not write in this margin

$$y = 3x^3 - 3x^2 - 9x + 12$$

$$\frac{dy}{dx} = 3x^2 - 6x - 9$$

$$3(x^2-2x-3)=0$$

$$3(x-3(x+1)=0$$

$$x-3=0$$
 $x+1=0$
 $x=3$ $x=-1$
 $y=-15$ $y=17$

Stationary points at (-1,17) (3,-15)

\propto	-1-		-1+	3	3+
dy	the	0	-ve	0	tre
Stope	1	ORDING.	1	-	1

when
$$x = -2$$

 $y = 15$ (the)

2. (a)(i)
$$f(x) = 3x+1$$
 $g(x) = x^2-2$

$$f(g(6)) = f(x^2-2)$$

$$= 3(x^2-2)+1$$

$$p(6) = 3x^2-5$$
(ii) $g(f(x)) = g(3x+1)$

$$= (3x+1)^2-2$$

(b)
$$p(x) = 3x^2 - 5$$
 $q(x) = 9x^2 + 6x - 1$
 $p(x) = 6x$ $q(x) = 18x + 6$

$$\rho'(x) = q'(x)$$

 $6x = 18x + 6$
 $-12x = 6$

900 = 9x2 +6x-1

2 = - =

x = 1 is a root.

(ii)
$$x^3 + 8x^2 + 11x - 20 = (x-1)(x^2 + 9x + 20)$$

= $(x-1)(x+5)(x+4)$

Enter number of question

3. (b)
$$\log_2(x+3) + \log_2(x^2+5x-4) = 3$$

 $\log_2(x+3)(x^2+5x-4) = 3$
 $(x+3)(x^2+5x-4) = 2^3$
 $x^3+5x^2-4x+3x^2+15x-12 = 8$
 $x^3+8x^2+11x-20 = 0$
 $(x-1)(x+5)(x+4) = 0$
 $x=1$ or $x=-5$ or $x=-4$

4. (6)
$$f(5,10)$$
 $(x+1)^2 + (y-2)^2 = 100$

$$LHS = (x+1)^2 + (y-2)^2$$

$$= (5+1)^2 + (10-2)^2$$

$$= 6^2 + 8^2$$

$$= 100$$

$$= RHS.$$

P(5,10) lies on the circle

(b)
$$\vec{PQ} = 2 \vec{PC}$$
 where $C(-1,2)$ is the centre of C ,
$$\vec{PC} = \begin{pmatrix} -1 \\ 2 \end{pmatrix} - \begin{pmatrix} -1 \\ 10 \end{pmatrix}$$
 centre of C ,
$$\vec{PC} = \begin{pmatrix} -12 \\ -16 \end{pmatrix}$$
 so $\vec{Q}(5-12,10-16)$

$$\vec{Q}(-7,-6)$$

4 (b) cent.
$$m_{pq} = \frac{10 - (-6)}{5 - (-7)}$$

$$= \frac{16}{12}$$

$$= \frac{4}{3}$$

$$44 + 24 = -3(x+7)$$

 $44 + 24 = -3xc - 21$

$$= \begin{pmatrix} -12 \\ -16 \end{pmatrix}$$

$$\begin{pmatrix} -12 \\ -16 \end{pmatrix} = \begin{pmatrix} x \\ 4 \end{pmatrix} - \begin{pmatrix} -7 \\ -6 \end{pmatrix}$$

$$\begin{pmatrix} x \\ 4 \end{pmatrix} = \begin{pmatrix} -19 \\ -22 \end{pmatrix}$$

$$C_2 = 20 \text{ Centre}(5,10)$$

 $(x-5)^2 + (y-10)^2 = 400$

$$r = 20$$
 Centre $(-19, -22)$
 $(x+19)^2 + (y+22)^2 = 400$

5. (a)
$$g(x) = 3 \cos(2x)$$
 $M = 3$, $n = 2$

$$M = 3, n = 2$$

(b)
$$f(x) = g(x)$$

-4 cos(2x)+3 = 3 cos(2x)

$$7\cos(2x) = 3$$

 $\cos 2x = 7$

$$2z = \cos^{-1}\left(\frac{3}{7}\right)$$

$$x = 0.6, 2.6$$

x = 0.6, 2.6 Lork in radians callect to I d.p.

$$0x x = 0.6$$
 $y = 3 \cos 1.13$
 $x = 2.6$
 $y = 3 \cos 5.16$
 $x = 1.3$

$$= (7.8 - \frac{75.25.2}{2}) - (1.8 - \frac{75.1.2}{2})$$

$$= (7.8 + 3.1) - (1.8 - 3.3)$$

$$= 10.9 - (-1.5)$$

(a)
$$N = N_0 e^{t}$$
 $N_0 = 61$
 $t = 14$
 $r = 0.016 (1.6%)$

$$\ln e^{0.0043t} = \ln 2$$

$$0.0043t = \ln 2$$

$$t = \ln 2$$

$$0.0043$$

Scotland's population will double in 161.2 years.

(9)
$$p.(9+r) = p.9 + p.r$$

= $4 \times 3 \cos 30^{\circ} + 4 \times \frac{3}{2} \cos 90^{\circ}$
= $12 \times \frac{\sqrt{3}}{2} + 0$
= $6\sqrt{3}$

$$r = 191 \sin 30^{\circ}$$

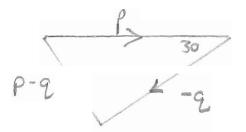
$$= 3 \times \frac{1}{2}$$

$$= \frac{3}{2}$$

$$r.(p-q) = r.p - r.q$$

$$= \frac{2}{2} \times 4 \cos 90^{\circ} - \frac{3}{2} \times 3 \cos 120^{\circ}$$

$$= 0 - \frac{9}{2}(-\frac{1}{2})$$


4

$$\cos 30^\circ = \frac{|q+r|}{|q|}$$

$$q+r| = 3\cos 3$$

$$= 3 \cos 30^\circ$$

$$= \frac{3\sqrt{3}}{2}$$

using cosine rule

$$1P-91^2 = 4^2 + 3^2 - 2 \times 4 \times 3 \times \cos 30^\circ$$

= $16 + 9 - 24 \cos 30^\circ$